热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

鸡翅|时会_pytorch(网络模型)

篇首语:本文由编程笔记#小编为大家整理,主要介绍了pytorch(网络模型)相关的知识,希望对你有一定的参考价值。上一篇神经网络鸡翅nn.Mod

篇首语:本文由编程笔记#小编为大家整理,主要介绍了pytorch(网络模型)相关的知识,希望对你有一定的参考价值。


上一篇


神经网络鸡翅nn.Module


官网

import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))# 卷积、非线性处理
return F.relu(self.conv2(x))

练习

import torch
import torch.nn as nn
import torch.nn.functional as F
class Dun(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
return x+1
dun=Dun()
x=torch.tensor(1.0)# 转化类型
output=dun(x);# 调用forward
print(output)# 输出

卷积层


import torch
input=torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
kernel=torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
print(input.shape)# 输出尺寸
print(kernel.shape)
input=torch.reshape(input,(1,1,5,5))# 类型转换
kernel=torch.reshape(kernel,(1,1,3,3))# 类型转换
print(input)
print(kernel)
print(input.shape)
print(kernel.shape)
# 卷积操作
out= F.conv2d(input,kernel,stride=1)
print(out)
out= F.conv2d(input,kernel,stride=2)
print(out)
# 填充
out= F.conv2d(input,kernel,stride=1,padding=1)
print(out)

输出chanel是2时

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("./data_set_test",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader= DataLoader(dataset,batch_size=64)
# 卷积类
class Dun(nn.Module):
def __init__(self):
super().__init__()
self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
def forward(self,x):
return self.conv1(x)
dun=Dun()
print(dun)
writer= SummaryWriter("./logs")
step=0
# 卷积操作
for data in dataloader:
img,target=data
output=dun(img)
print(img.shape)
print(output.shape)
writer.add_images("input",img,step)
output=torch.reshape(output,(-1,3,30,30))# -1时会根据后面的值自动计算
writer.add_images("output",output,step)
step+=1
writer.close()


池化层

作用:就像高清视频换成低清视频


import torch
from torch import nn
from torch.nn import MaxPool2d
input =torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]],dtype=torch.float32)
input=torch.reshape(input,(-1,1,5,5))
class Dun(nn.Module):
def __init__(self):
super().__init__()
self.maxpool=MaxPool2d(kernel_size=3,ceil_mode=True)# ceil_model false和True的结果和预期的一致
def forward(self,inut):
return self.maxpool(input)
dun=Dun()
out=dun(input)
print(out)


图片处理

import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("./data_set_test",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader= DataLoader(dataset,batch_size=64)
class Dun(nn.Module):
def __init__(self):
super().__init__()
self.maxpool=MaxPool2d(kernel_size=3,ceil_mode=True)# ceil_model false和True的结果和预期的一致
def forward(self,input):
return self.maxpool(input)
dun=Dun()
step=0
writer=SummaryWriter("logs")
for data in dataloader:
img,target=data
writer.add_images("input",img,step)
output=dun(img)
writer.add_images("output",output,step)
step+=1
writer.close()


非线性激活

非线性变换目的是引入非线性特征,可以更好地处理信息


ReLU

import torch
from torch import nn
from torch.nn import ReLU
input= torch.tensor([[1,-0.5],[-1,3]])
input=torch.reshape(input,(-1,1,2,2))
print(input.shape)
class Dun(nn.Module):
def __init__(self):
super().__init__()
self.relu1=ReLU()
def forward(self,input):
return self.relu1(input)
dun=Dun()
output=dun(input)
print(output)


sigmoid

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("./data_set_test",train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64)
class Dun(nn.Module):
def __init__(self):
super().__init__()
self.relu1=ReLU()
self.sigmoid=Sigmoid()
def forward(self,input):
return self.sigmoid(input)
dun=Dun()
writer=SummaryWriter("./logs")
step=0
for data in dataloader:
img,target=data
writer.add_images("input",img,global_step=step)
output=dun(img)
writer.add_images("output",output,global_step=step)
step+=1
writer.close()


线性层


import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("./data_set_test",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Dun(nn.Module):
def __init__(self):
super().__init__()
self.linear=Linear(196608,10)
def forward(self,input):
return self.linear(input)
dun=Dun()
for data in dataloader:
img,target=data
print(img.shape)
# input=torch.reshape(img,(1,1,1,-1))
input= torch.flatten(img)# 将数据展平一行,可以代替上面的一行
print(input.shape)
output=dun(input)
print(output.shape)


正则化层

加快神经网络地训练速度

# With Learnable Parameters
m = nn.BatchNorm2d(100)
# Without Learnable Parameters
m = nn.BatchNorm2d(100, affine=False)
input = torch.randn(20, 100, 35, 45)
output = m(input)

其他层有Recurrent Layers、Transformer Layers、Linear Layers等


简单的网络模型

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Dun(nn.Module):
def __init__(self):
super().__init__()
# 2.
self.model1 = Sequential(Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10))
# 1.
# self.conv1=Conv2d(3,32,5,padding=2)
# self.maxpool1=MaxPool2d(2)
# self.conv2=Conv2d(32,32,5,padding=2)
# self.maxpool2=MaxPool2d(2)
# self.conv3=Conv2d(32,64,5,padding=2)
# self.maxpool3=MaxPool2d(2)
# self.flatten=Flatten()
# self.linear1=Linear(1024,64)
# self.linear2=Linear(64,10)
def forward(self,x):
x=self.model1(x)
return x
dun=Dun()
# 测试
input=torch.ones((64,3,32,32))
print(dun(input).shape)
writer=SummaryWriter("./logs")
writer.add_graph(dun,input)
writer.close()


loss function


L1Loss、MSELoss

import torch
from torch.nn import L1Loss
from torch import nn
input=torch.tensor([1,2,3],dtype=torch.float32)
targrt=torch.tensor([1,2,5],dtype=torch.float32)
loss=L1Loss(reduction="sum")# 该参数有sum和mean两种,默认是mean
print(loss(input,targrt))
loss_mse=nn.MSELoss()
print(loss_mse(input,targrt))


CROSSENTROPYLOSS

import torch
from torch.nn import L1Loss
from torch import nn
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross=nn.CrossEntropyLoss()
print(loss_cross(x,y))


使用

import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("./data_set_test",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset=dataset,batch_size=1)
# 分类神经网络
class Dun(nn.Module):
def __init__(self):
super().__init__()
# 2.

推荐阅读
  • Exploring issues and solutions when defining multiple Faust agents programmatically. ... [详细]
  • 在AngularJS中,有时需要在表单内包含某些控件,但又不希望这些控件导致表单变为脏状态。例如,当用户对表单进行修改后,表单的$dirty属性将变为true,触发保存对话框。然而,对于一些导航或辅助功能控件,我们可能并不希望它们触发这种行为。 ... [详细]
  • 本文探讨了Android系统中联系人数据库的设计,特别是AbstractContactsProvider类的作用与实现。文章提供了对源代码的详细分析,并解释了该类如何支持跨数据库操作及事务处理。源代码可从官方Android网站下载。 ... [详细]
  • 来自FallDream的博客,未经允许,请勿转载,谢谢。一天一套noi简直了.昨天勉强做完了noi2011今天教练又丢出来一套noi ... [详细]
  • 使用 Babylon.js 实现地球模型与切片地图交互(第三部分)
    本文继续探讨在上一章节中构建的地球模型基础上,如何通过自定义的 `CameraEarthWheelControl` 类来实现更精细的地图缩放控制。我们将深入解析该类的实现细节,并展示其在实际项目中的应用。 ... [详细]
  • 我在尝试将组合框转换为具有自动完成功能时遇到了一个问题,即页面上的列表框也被转换成了自动完成下拉框,而不是保持原有的多选列表框形式。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • 本文探讨了如何使用Scrapy框架构建高效的数据采集系统,以及如何通过异步处理技术提升数据存储的效率。同时,文章还介绍了针对不同网站采用的不同采集策略。 ... [详细]
  • 本文介绍了使用Python和C语言编写程序来计算一个给定数值的平方根的方法。通过迭代算法,我们能够精确地得到所需的结果。 ... [详细]
  • Android 开发技巧:使用 AsyncTask 实现后台任务与 UI 交互
    本文详细介绍了如何在 Android 应用中利用 AsyncTask 来执行后台任务,并及时将任务进展反馈给用户界面,提高用户体验。 ... [详细]
  • Java连接MySQL数据库的方法及测试示例
    本文详细介绍了如何安装MySQL数据库,并通过Java编程语言实现与MySQL数据库的连接,包括环境搭建、数据库创建以及简单的查询操作。 ... [详细]
  • 本文详细介绍了如何在PyQt5中创建简易对话框,包括对话框的基本结构、布局管理以及源代码实现。通过实例代码,展示了如何设置窗口部件、布局方式及对话框的基本操作。 ... [详细]
  • 本文探讨了如何利用 Android 的 Movie 类来展示 GIF 动画,并详细介绍了调整 GIF 尺寸以适应不同布局的方法。同时,提供了相关的代码示例和注意事项。 ... [详细]
  • 本文介绍了如何使用 Python 的 Pyglet 库加载并显示图像。Pyglet 是一个用于开发图形用户界面应用的强大工具,特别适用于游戏和多媒体项目。 ... [详细]
author-avatar
一直很哇塞
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有